EFFICIENTLY INEFFICIENT MARKETS FOR ASSETS AND ASSET MANAGEMENT

Nicolae Garleanu
University of California, Berkeley, CEPR, and NBER

Lasse Heje Pedersen
Copenhagen Business School, NYU, CEPR, and AQR Capital Management
The information set forth herein has been obtained or derived from sources believed by AQR Capital Management, LLC ("AQR") to be reliable. However, AQR does not make any representation or warranty, express or implied, as to the information's accuracy or completeness, nor does AQR recommend that the attached information serve as the basis of any investment decision. This document has been provided to you solely for information purposes and does not constitute an offer or solicitation of an offer, or any advice or recommendation, to purchase any securities or other financial instruments, and may not be construed as such. This document is intended exclusively for the use of the person to whom it has been delivered by AQR and it is not to be reproduced or redistributed to any other person. Past performance is not a reliable indicator of future performance.

This presentation is not research and should not be treated as research. This presentation does not represent valuation judgments with respect to any financial instrument, issuer, security or sector that may be described or referenced herein and does not represent a formal or official view of AQR.

The views expressed reflect the current views as of the date hereof and neither the speaker nor AQR undertakes to advise you of any changes in the views expressed herein. It should not be assumed that the speaker will make investment recommendations in the future that are consistent with the views expressed herein, or use any or all of the techniques or methods of analysis described herein in managing client accounts. AQR and its affiliates may have positions (long or short) or engage in securities transactions that are not consistent with the information and views expressed in this presentation.

The information contained herein is only as current as of the date indicated, and may be superseded by subsequent market events or for other reasons. Charts and graphs provided herein are for illustrative purposes only. The information in this presentation has been developed internally and/or obtained from sources believed to be reliable; however, neither AQR nor the speaker guarantees the accuracy, adequacy or completeness of such information. Nothing contained herein constitutes investment, legal, tax or other advice nor is it to be relied on in making an investment or other decision.

There can be no assurance that an investment strategy will be successful. Historic market trends are not reliable indicators of actual future market behavior or future performance of any particular investment which may differ materially, and should not be relied upon as such. Target allocations contained herein are subject to change. There is no assurance that the target allocations will be achieved, and actual allocations may be significantly different than that shown here. This presentation should not be viewed as a current or past recommendation or a solicitation of an offer to buy or sell any securities or to adopt any investment strategy.

The information in this presentation may contain projections or other forward-looking statements regarding future events, targets, forecasts or expectations regarding the strategies described herein, and is only current as of the date indicated. There is no assurance that such events or targets will be achieved, and may be significantly different from that shown here. The information in this presentation, including statements concerning financial market trends, is based on current market conditions, which will fluctuate and may be superseded by subsequent market events or for other reasons. Performance of all cited indices is calculated on a total return basis with dividends reinvested.

The investment strategy and themes discussed herein may be unsuitable for investors depending on their specific investment objectives and financial situation. Please note that changes in the rate of exchange of a currency may affect the value, price or income of an investment adversely.

Neither AQR nor the speaker assumes any duty to, nor undertakes to update forward looking statements. No representation or warranty, express or implied, is made or given by or on behalf of AQR, the speaker or any other person as to the accuracy and completeness or fairness of the information contained in this presentation, and no responsibility or liability is accepted for any such information. By accepting this presentation in its entirety, the recipient acknowledges its understanding and acceptance of the foregoing statement.
SECURITY MARKETS VS. ASSET MANAGEMENT MARKETS

<table>
<thead>
<tr>
<th>Security markets</th>
<th>Asset management markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully efficient</td>
<td>Fama (1970)</td>
</tr>
<tr>
<td>Efficiently inefficient</td>
<td>security and asset management markets</td>
</tr>
</tbody>
</table>

Definition: Efficiently inefficient markets
- Inefficient enough that active investors are compensated for their costs
- Efficient enough to discourage additional active investing

Related literature:
- Grossman and Stiglitz (1980)
- Garleanu and Pedersen (2015)

Source: AQR, Efficiently Inefficient (Pedersen 2015).
OVERVIEW OF TALK

- Efficiently inefficient:
 How smart money invests & market prices are determined

 Book by Princeton University Press

- Efficiently Inefficient Markets for Assets and Asset Management

 Academic paper – focus of the talk
HOW DO YOU BEAT THE MARKET? LIQUIDITY AND INFORMATION

- Discretionary Long-Short Equity
 - Ainslie
 - Chanos
 - Asness
 - information on shorting over-bought stocks
 - systematic use of information and supply/demand imbalances
 - information on out-of-favor stocks

- Short Bias
 - information on policy changes and macro imbalances

- Quant Equity
 - Global Macro
 - Soros
 - information on trends vs. hedgers

- Managed Futures
 - Harding
 - information on flows due to institutional frictions in fixed income

- Fixed Income Arb.
 - Scholes
 - information about illiquid convertible bonds

- Convertible Bond Arb.
 - Griffin

- Event-Driven Arb.
 - Paulson
 - information on how to provide liquidity to sellers of merger target
Efficiently inefficient:
How smart money invests & market prices are determined

Book by Princeton University Press

Efficiently Inefficient Markets for Assets and Asset Management

Academic paper – focus of the talk
PREDICTIONS AND EVIDENCE: SECURITY MARKETS

Good investors

Bad investors

search

Good asset managers

Bad asset managers

information

Good securities

Bad securities

Source: AQR. For illustrative purposes only. Past performance is not a guarantee of future performance.
Several strategies have historically outperformed
 - Value, momentum, quality, carry, low-risk

Failure of the Law of One Price:
 - Stocks: Siamese twin stock spreads
 - Bonds: Off-the-run vs. on-the-run bonds
 - FX: Covered interest-rate parity violations
 - Credit: CDS-bond basis

Bigger anomalies when
 - Information costs for managers are high
 - Search costs for investors are high

Conclusion: Security markets are
 - not fully efficient
 - efficiently inefficient
“Old consensus” in the academic literature:

Active mutual funds have no skill:
looks only at average manager, Jensen (1968), Fama (1970)

“New consensus” in the academic literature

Skill exists among mutual funds and can be predicted:

“we find that a sizable minority of managers pick stocks well enough to more than cover their costs. Moreover, the superior alphas of these managers persist”

Skill exists among hedge funds:

“top hedge fund performance cannot be explained by luck”

Skill exists in private equity and VC: Kaplan and Schoar (2005)

“we document substantial persistence in LBO and VC fund performance”

Conclusion: asset management market is efficiently inefficient
– Good managers exist, but picking them is difficult (requires recourses, manager selection team, due diligence, etc.)

Source: AQR. For illustrative purposes only. Past performance is not a guarantee of future performance.
Institutional investors outperform retail investors
Gerakos, Linnainmaa, and Morse (2015)

“institutional funds earned annual market-adjusted returns of 108 basis points before fees and 61 basis points after fees”

Larger institutional investors outperform smaller ones
Dyck and Pomorski (2015)

Follow the smart money
Evans and Fahlenbrach (2012)

“retail funds with an institutional twin outperform other retail funds by 1.5% per year”

Conclusion: efficiently inefficient investors
- Evidence that more sophisticated investors can perform better
- These educate themselves and spend resources picking managers

SEARCHING INVESTORS:
\[\tilde{A} - A \text{ passive} \]

ACTIVE SEARCHING INVESTORS:
\[A \text{ active} \]

NOISE ALLOCATORS:
\[N \]

NOISE TRADERS:

Asset managers:
\[M \text{ informed} \]

Asset managers:
\[\tilde{M} - M \text{ uninformed} \]

Security market:

Price \(p \)
Payoff \(v \sim N(m, \sigma_v) \)
Supply \(q \sim N(Q, \sigma_q) \)

Signal \(s = v + \varepsilon \)
Noise \(\varepsilon \sim N(0, \sigma_\varepsilon) \)
Cost \(k \)

Random allocations

Search for informed managers cost \(c(M, A) \)

Fee \(f \)
MODEL: DEFINITIONS

Searching investors: $\tilde{A} - A$ passive

Searching investors: A active

Noise Allocators N

Noise Traders

Asset managers: M informed

Asset managers: $\bar{M} - M$ uninformed

uninformed trading $x_u(p)$

informed trading $x_i(p, s)$

fee f

random allocations

security market

Price p

Payoff $v \sim N(m, \sigma_v)$

Supply $q \sim N(Q, \sigma_q)$

Signal $s = v + \varepsilon$

Noise $\varepsilon \sim N(0, \sigma_{\varepsilon})$

Cost k

Profit sources:
- information
- liquidity
MODEL: EQUILIBRIUM CONCEPT

General equilibrium for assets and asset management \((p, A, M, f)\)

\[q = I x_i(p, s) + (\bar{A} + N - I) x_u(p) \]

\[I = A + N \frac{M}{M} \]

(A) Investors’ active/passive decision is optimal

(M) Managers informed/uninformed decision is optimal

(f) Asset management fee \(f\) outcome of Nash bargaining
Proposition. For a given I:

(i) A linear asset-market equilibrium exists, $p = \theta_0 + \theta_s s + \theta_q q$

(ii) The *price inefficiency* $\eta := \frac{1}{2} \log \left(\frac{\text{var}(v|p)}{\text{var}(v|s)} \right)$ is related to the *utility gain from information*, $u_i - u_u$:

$$\eta = \gamma (u_i - u_u)$$

(iii) η is decreasing in I and given by

$$\eta = -\frac{1}{2} \log \left(1 - \frac{\gamma^2 \sigma_q^2 \sigma^2}{I^2 + \gamma^2 \sigma_q^2 \sigma_w^2} \frac{\sigma^2}{\sigma^2 + \sigma_v^2} \right) \in (0, \infty)$$

What’s next/new:
- Deriving A and M, which gives $I = A + N \frac{M}{M}$
- Deriving the fee f
- New testable implications
Proposition

- **Informed asset managers**: outperform passive investing before and after fees
- **Uninformed managers**: underperform after fees
- **Searching investors**: outperform net of fees, i.e. “return predictability”
 - outperformance just compensates their search costs in an interior equilibrium
 - larger search frictions means higher net outperformance, i.e., more predictability
- **Noise allocators**: outperform or underperform after fees
- **Average manager (= average investor), value-weighted**: outperforms after fees if the number N of noise allocators is small relative to A
 - underperforms otherwise

```
Asset managers: informed + Asset managers: uninformed = Searching investors: active + Noise Allocators
```
Proposition

i. Lower search costs c:
 - More active investors A, more informed investors I, smaller price inefficiency η, lower fee f
 - Higher/lower M and total fee revenue

ii. Vanishing search costs, $c \to 0$:
 - when c sufficiently low: $A = \bar{A}$ (constrained efficiency)
 - If $\bar{A} \to \infty$, then $\eta \to 0$, $f \to 0$, $M \to 0$, and the total fee revenue $f(A + N) \to 0$ (full efficiency)
MODEL: SMALL AND LARGE INVESTORS AND MANAGERS

Investors differ in their
- size (wealth, risk tolerance)
- sophistication (search cost)

Managers may differ in their
- information cost

Searching investors: passive

Searching investors: active

Noise Allocators

Noise Traders

Asset managers: informed

Asset managers: uninformed

uninformed trading

informed trading

uninformed trading

random trading

random allocations

Security market

EFFICIENTLY INEFFICIENT
MODEL: SMALL AND LARGE INVESTORS AND MANAGERS

Searching investors: passive

Searching investors: active

Noise Allocators

Noise Traders

Asset managers: informed

Asset managers: uninformed

uninformed trading

informed trading

uninformed trading

random allocations

Security market

Investors differ in their
- size (wealth, risk tolerance)
- sophistication (search cost)

Managers may differ in their
- information cost

random trading
Proposition (who should be active vs. passive?)

i. An investors should be
 – active if wealthy and sophisticated enough (i.e., large W_a and low c_a)
 – passive if small or unsophisticated

ii. An asset manager should acquire information
 – if his information cost is low enough
 – otherwise rely on noise allocators
Proposition (which investors are expected to perform well?)

Investors who are more wealthy or sophisticated have higher expected returns with active managers before and after fees.

Proposition (which managers are expected to perform well?)

i. Across asset managers, returns covary positively with
 - average investor size
 - average investor sophistication

ii. Asset managers with advantage in collecting information (low k) earn higher expected returns
 - Asset managers with good educations from good universities and relevant experience
 - Funds that are part of fund families
Larger pension funds outperform smaller ones, e.g. in private equity

- Dyck and Pomorski (2015): "A one standard deviation increase in PE holdings is associated with 4% greater returns per year"
ECONOMIC MAGNITUDE

Proposition.
The market inefficiency η is linked to the proportional fee $f\% = f/W$:

$$\eta = 2f\% \gamma^R$$

and squared gross Sharpe ratios:

$$\eta \approx \frac{1}{2} \left(E(SR_i^2) - E(SR_u^2) \right)$$

Example.

- Inefficiency
 $$\eta = 2 \cdot 1\% \cdot 3 = 6\%$$

- corresponding to
 $$6\% \approx \frac{1}{2} \left(0.53^2 - 0.4^2 \right)$$
Markets are efficiently inefficient
- Security markets
- Asset management markets

Understanding efficiently inefficient markets shows
- *why* some investors and managers can outperform vs. underperform
- *who* should be active vs. passive
- *who* can be expected to outperform or underperform

Security market efficiency depends on
- Information costs
- Costs of finding good manager

Industrial organization of asset management
CONCLUSION: THE WORLD IS EFFICIENTLY INEFFICIENT

Investing
- Passive investing
- Active investing
 - Transaction costs and liquidity risk
 - Value investing and liquidity provision
 - Momentum investing
 - Quantitative investment

Efficiently inefficient markets:
Active investing generates profits that compensate its costs/risks

Driving
- Stay in the lane
- Switch lanes
 - Lane-switching costs, toll, and collision risk
 - Use the less-traveled road
 - Speed is picking up
 - GPS and the right app

Efficiently inefficient traffic:
“Active driving” saves time that compensate its costs/risks
it must be the case that
(1) before costs: \(\text{average active return} = \text{passive return} \)
(2) after costs: \(\text{average active return} < \text{passive return} \)

These assertions … depend only on the laws of addition, subtraction, multiplication and division. Nothing else is required.
Focus first on returns before fees
- Results for net returns follow from higher fees for active

Sharpe’s starting point:

\[\text{market} = \text{passive investors} + \text{active investors} \]

\[\text{market return} = \text{average(passive return , active return)} \]

Passive investing defined as holding market-cap weights

\[\text{market return} = \text{passive return} \]

Conclusion: the average cannot beat the average

\[\text{market return} = \text{passive return} = \text{average active return} \]
SHARPE’S HIDDEN ASSUMPTION

- Key implicit assumption:
 - Passive investors trade to their market-cap weights for free

- This assumption does **not** hold in the real world:
 - the market portfolio changes
 - IPOs, SEOs, share repurchases, etc.
 - index inclusions, deletions
 - investors rebalance

- Relaxing this assumption breaks Sharpe’s equality
SHARPENING THE ARITHMETIC OF ACTIVE MANAGEMENT

- IPOs, SEOs, rebalancing, etc. → passive investors must trade
 - When they do, they are likely to lose to active
 - Active informed, passive not informed

- So active worth positive fees

- Empirically, the aggregate value of active
 - Non-trivial
 - But may be lower than average active fees

Sharpe’s (1991) famous “arithmetic of active management” states that

"it must be the case that
1. before costs, the return on the average actively managed dollar will equal the return on the average passively managed dollar, and
2. after costs, the return on the average actively managed dollar will be less..."

These assertions will hold for any time period. Moreover, they depend only on the laws of addition, subtraction, multiplication and division. Nothing else is required. [Sharpe and Morgenstern]

Sharpe’s arithmetic is often stated as incontrovertible fact by speakers at conferences followed by a triumphant “QED!” and is cited as proof that active management is “doomed” in aggregate (French 2008).

If active management is doomed, then so is our market-based financial system because we need someone to make prices informative. However, I show that Sharpe’s equality does not hold in general. His arithmetic is based on the implicit assumption that the market portfolio never changes. When we relax this assumption, which does not hold in the real world, Sharpe’s arithmetic is no longer a mathematical identity.

Sharpe’s argument ignores a key aspect of addition and subtraction; namely the addition of new firms and shares and the subtraction of disappearing ones. Although seemingly minor, the market portfolio changes importantly over time such that even “passive” investors must trade regularly, for instance to buy newly issued shares and sell those being repurchased. Whenever passive investors trade in order to maintain their market-weighted portfolios, they may trade at less favorable prices than active managers, which breaks Sharpe’s equality.

This turnover of the market portfolio is important for two reasons. First, the changes of the market portfolio are large enough that active managers can potentially add noticeable returns relative to passive investors. Second, the issuance of securities is at the heart of a market-based economy. When we put these reasons together, we see that active management can be worth positive fees, which in turn allows active managers to provide an important, beneficial role in the economy — helping to allocate resources efficiently.

Sharpe (1991 and 2013) is fighting a good and important fight in pointing out the importance of fees and the flaws of many arguments in favor of active management. I think that low-cost index funds is one

The fraction of the market owned by an investor who starts off with the market portfolio but never trades after that (i.e., no participation in IPOs, SEOs, or share repurchases). Each line is a different starting date.

Source: Sharpening the Arithmetic of Active Management (Pedersen 2016). Shows path of an investor starting in a given year (1926, 1946, 1966, 1986, 2006) with the market portfolio and not trading thereafter. Market portfolio is all stocks included in the Center for Research in Security Prices (CRSP) database. For illustrative purposes only. Past performance is not a guarantee of future performance. Please read important disclosures in the Appendix.
Implications of Sharpe’s zero-sum arithmetic:
– Active loses to passive after fees
– Money flows passive → markets less efficient
– Surprisingly active still loses
– Eventually all money leaves active, sector is doomed

What happens if everyone is passive?

➢ All IPOs successful regardless of price
 – Everyone asks for their fraction of shares

➢ Initial result: boom in IPOs

➢ Eventual result: doom
 – Opportunistic firms fail
 – Equity market collapses
 – People lose trust in financial system
 – No firms can get funded
 – Real economy falters
THE FUTURE OF ASSET MANAGEMENT

- **My arithmetic:**
 - Suppose active loses to passive after fees
 - Money flows to passive → markets less efficient
 - Active becomes more profitable → new equilibrium, no doom

- **The future of asset management**
 - Passive will continue to grow, but towards a level < 100%
 - Systematic investing and FinTech will continue to grow
 - Active management will survive, pressure on performance and fees

- **Capital market is a positive-sum game**
 - Issuers can finance useful projects
 - Passive investors get low-cost access to equity
 - Active managers compensated for their information costs

For illustrative purposes only.
TRADING BY A “PASSIVE” INVESTOR: STOCKS AND BONDS

Source: Sharpening the Arithmetic of Active Management (Pedersen 2016). Turnover from 1926-2015 for all US listed stocks included in CRSP and the US municipal bonds, Treasury bonds, mortgage-related bonds, corporate debt, federal agency securities, and asset-backed securities, and turnover is computed as sum of absolute changes in shares outstanding as a percentage of total market value in the previous month. “Other” includes mergers that may not require trading. For illustrative purposes only. Past performance is not a guarantee of future performance. Please read important disclosures in Appendix.
TRADING BY A “PASSIVE” INVESTOR: INDICES

Source: Sharpening the Arithmetic of Active Management (Pedersen 2016). Turnover from 1926-2015 for equity indices (S&P500 and Russell 2000) and corporate bond indices (BAML investment grade and high yield indices), and turnover is computed as sum of absolute changes in shares outstanding as a percentage of total market value in the previous month. “Other” includes mergers that may not require trading. For illustrative purposes only. Past performance is not a guarantee of future performance. Please read important disclosures in Appendix.
COST OF PASSIVE AND BENEFIT OF ACTIVE

➢ Turnover of publicly traded equities
 – IPOs underpriced by 10-20% on average in the U.S. and other countries (Ljungqvist 2005)
 – 1.2% times 15% is 18bps
 – SEOs underpriced about 2%
 – 3% times 2% is 6bps
 – Other rebalancing costs

➢ Index reconstitution effects, Petajisto (2011):

 “additions to the S&P 500 and Russell 2000, we find that the price impact from announcement to effective day has averaged +8.8% and +4.7%, respectively, and −15.1% and −4.6% for deletions.”

 the lower bound of “the index turnover cost” to be “21–28 bp annually for the S&P 500 and 38–77 bp annually for the Russell 2000.”

Why can active managers outperform in aggregate?

- Example 0: non-informational investors lose to informed active managers
 - Behavioral biases
 - Leverage constrained investors
 - Pension plans hedging liabilities
 - Central banks intervening

- Example 1: IPOs, SEOs, and repurchases

- Example 2: Index additions and deletions

- Example 3: Changes in the “market” and private assets

- Example 4: Rebalancing
This document has been provided to you solely for information purposes and does not constitute an offer or solicitation of an offer or any advice or recommendation to purchase any securities or other financial instruments and may not be construed as such. The factual information set forth herein has been obtained or derived from sources believed to be reliable but it is not necessarily all-inclusive and is not guaranteed as to its accuracy and is not to be regarded as a representation or warranty, express or implied, as to the information’s accuracy or completeness, nor should the attached information serve as the basis of any investment decision. This document is intended exclusively for the use of the person to whom it has been delivered and it is not to be reproduced or redistributed to any other person. For one-on-one presentation use only.

PAST PERFORMANCE IS NOT A GUARANTEE OF FUTURE PERFORMANCE.

Gross performance results do not reflect the deduction of investment advisory fees, which would reduce an investor’s actual return. For example, assume that $1 million is invested in an account with the Firm, and this account achieves a 10% compounded annualized return, gross of fees, for five years. At the end of five years that account would grow to $1,610,510 before the deduction of management fees. Assuming management fees of 1.00% per year are deducted monthly from the account, the value of the account at the end of five years would be $1,532,886 and the annualized rate of return would be 8.92%. For a 10-year period, the ending dollar values before and after fees would be $2,593,742 and $2,349,739, respectively. AQR’s asset based fees may range up to 2.85% of assets under management, and are generally billed monthly or quarterly at the commencement of the calendar month or quarter during which AQR will perform the services to which the fees relate. Where applicable, performance fees are generally equal to 20% of net realized and unrealized profits each year, after restoration of any losses carried forward from prior years. In addition, AQR funds incur expenses (including start-up, legal, accounting, audit, administrative and regulatory expenses) and may have redemption or withdrawal charges up to 2% based on gross redemption or withdrawal proceeds. Please refer to AQR’s ADV Part 2A for more information on fees. Consultants supplied with gross results are to use this data in accordance with SEC, CFTC, NFA or the applicable jurisdiction’s guidelines.

There is a risk of substantial loss associated with trading commodities, futures, options, derivatives and other financial instruments. Before trading, investors should carefully consider their financial position and risk tolerance to determine if the proposed trading style is appropriate. Investors should realize that when trading futures, commodities, options, derivatives and other financial instruments one could lose the full balance of their account. It is also possible to lose more than the initial deposit when trading derivatives or using leverage. All funds committed to such a trading strategy should be purely risk capital.

Broad-based securities indices are unmanaged and are not subject to fees and expenses typically associated with managed accounts or investment funds. Investments cannot be made directly in an index.

AQR Capital Management (Europe) LLP, a U.K. limited liability partnership, is authorized by the U.K. Financial Conduct Authority (“FCA”) for advising on investments (except on Pension Transfers and Pension Opt Outs), arranging (bringing about) deals in investments, dealing in investments as agent, managing a UCITS, managing an unauthorized AIF and managing investments. This material has been approved to satisfy UK FCA COBS 4.